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Shock-wave structure in a partially ionized gas 
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The structure of a shock wave in a partially ionized gas, which may be in thermal 
non-equilibrium ahead of the shock wave, is investigated. A method is developed 
to solve this problem by separating it into two parts. First, the structure of the 
shock wave associated with the massive particles, ions and atoms, is assumed to 
be of the Mott-Smith form. Then the behaviour of the electrons as they pass 
though this shock is analysed. Using this method, calculations are carried out 
for shock waves at several Mach numbers and several values of the electron-ion 
temperature ratio ahead of the shock. An essential feature of the shock profiles 
is found to be the existence of a broad zone of elevated electron temperature 
ahead of the electron compression region, caused by the high thermal conduc- 
tivity in the electron gas. 

1. Introduction 
The complete analysis of the structure of a steady plane shock wave in a 

partially ionized gas consists of determining the density, velocity, and tem- 
perature profiles of each of the species. At least three species must be con- 
sidered: ions, atoms and electrons. The basic equations are the mass, momentum, 
and energy-transport relations for each species, such as, for example, the 
Navier-Stokes equations and associated diffusion relations which follow from 
kinetic theory using the Navier-Stokes approximation, together with the 
appropriate Maxwell equations. 

The mathematical complication of such an analysis makes it necessary to 
seek certain simplifying approximations. The approximations we shall make use 
of are based on the following physical properties of a slightly ionized gas: 

(i) The energy content of the electrons is only a small fraction of the total 
internal energy of the gas. 

(ii) Because the electron mass is much smaller than the ion-atom mass (only 
singly ionized monatomic gases will be considered), the rate of energy exchange 
between electrons and massive particles is slow. Also, because of their almost 
equal mass, the ions and the neutral atoms have essentially the same mass- 
motion velocity, in the absence of external fields, and are the primary con- 
tributors to the viscous stress (momentum exchange) in the gas. 

(iii) On the other hand, the electrons, because of their high mobility, are 
effective in transporting thermal energy within the electron gas, although this 
energy is only very slowly communicated to the massive particles. 
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(iv) Finally, for all but very feebly ionized gases, the deviations from charge 
neutrality are negligible in comparison to the charge concentrations. Charge 
neutrality implies that in the absence of electric current the electrons and massive 
particles have the same mass-motion velocity. 

These properties lead us to adopt the following model for a shock wave in a 
partially ionized gas. The massive particles undergo a shock which is essentially 
uninfluenced by the presence of the electrons, and which is governed only by 
the transport properties and Mach number of the ion-atom mixture. The elec- 
trons, which are ‘subsonic’ with respect to the ion-atom Mach number, are 
compressed in passing through the ion-atom shock, and follow the density 
variation of the massive particles. However, because of the high electron thermal 
conductivity, the electron temperature within the shock zone may deviate 
appreciably from the ion-atom temperature, and the electrons will only very 
slowly come to equilibrium with the massive particles through relaxation. 
According to this model, the ion-atom shock acts as a kind of ‘forcing function’ 
on the electrons, and if the ion-atom shock structure is known beforehand, the 
only unknown in the problem is the electron temperature profile. It is important 
to note that the energy required to  compress and heat the electrons comes from 
the ion-atom mixture (through energy exchange and a slight departure from 
charge neutrality, as will be discussed later on) and not from the kinetic energy 
of the electrons, which is negligible. 

The form of the ion-atom shock structure which we shall use is the Mott-Smith 
(1951) solution. There is some reason to suppose (cf. Talbot 1962) that the 
Mott-Smith solution may be more accurate than the Navier-Stokes solution for 
high Mach numbers. For our purposes, moreover, the Mott-Smith solution is 
more convenient than the Navier-Stokes solution, since it provides us with a 
simple analytical representation of the massive-particle shock profile. In  parts 
of the analysis the Mott-Smith profiles are replaced by delta and Heaviside 
functions. 

We are not aware of any published work on the detailed structure of a shock 
wave in a partially ionized gas. Several studies have been made of shock waves in 
fully ionized gases, especially the proton-electron gas. In  particular, Jukes 
(1957) analysed this shock-structure problem by means of the Navier-Stokes 
equations, neglecting the thermal conductivity of the protons and the viscosity 
of the electrons. His results predict a broad zone of elevated electron tem- 
perature ahead of the massive-particle shock, as is predicted by the present 
analysis. Tidman (1958) attacked the same problem by using the Fokker- 
Planck equation, in the spirit of Mott-Smith. He, however, in effect assumedzero 
thermal conductivity for the electron gas. According to Tidman’s analysis, the 
ions are heated by an initial shock, and the electrons at the end of this shock 
are still at  their upstream temperature. The shock is followed by a relaxation 
zone, in which the electrons and ions equilibrate. However, according to Jukes’s 
results and (as will be seen) the present analysis, the electrons are very nearly 
a t  their final equilibrium temperature a t  the end of the ion shock. Thus it appears 
that the neglect of the electron thermal conductivity results in the loss of an 
essential feature of the shock structure in an ionized gas. 
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Another study of some interest is the work of Greenberg, Sen & Treve (1960). 
Here the shock structure problem in a fully ionized gas was treated with the 
neglect of the viscosity and thermal conductivity of both the electrons and 
protons, as well as the neglect of momentum and energy transfer between these 
species. Charge neutrality was not assumed, however, and diffusion was taken 
to be the shock-broadening mechanism. Greenberg et al. predict an oscillatory 
structure for both the electric field and the electron velocity, but their results are 
restricted to Mach numbers less than two, above which they were unable to find 
a continuous solution between the upstream and downstream boundary con- 
ditions. According to these authors, the oscillatory electric field constitutes a 
'fine structure' to the non-oscillating field obtained by Jukes, but because of the 
nature of their assumptions, it  is difficult to know how much physical significance 
may be attached to their results. 

2. Electron energy equation 
The flow of the gas is taken to be along the x-axis from -m to +a; x = 0 is 

taken as the centre of the ion-atom shock, For one-dimensional steady flow in 
the absence of applied electric and magnetic fields, the electron energy equation 
(see Kaufman 1960, for example) can be written as 

d d u  dQ 
dx dx dx %- (n, kT,) = - $n,kT, - - - + Q, - Rem - upem, 

in which u is the electron mean velocity, ne and T, the electron number density 
and temperature, and k Boltzmann's constant. The heat flux Q is given by 
- kh,(dT,/dx), where kh, is the electron thermal conductivity, and Pem and Re" 
denote the momentum and energy transfer rates from the electrons to the massive 
particles per unit volume, respectively. When the electrons and massive particles 
have the same mean velocity, P" vanishes. As usual, Q, represents the viscous 
dissipation, given by +,u,(du/dx)2, where pe is the electron gas viscosity. The degree 
of ionization is assumed constant, and energy transfers due to ionization- 
recombination processes are neglected in (2.1). A discussion of this point will 
be given later. 

For the transport properties of the electron gas we shall take the values appro- 
priate to a fully ionized gas, so that pe - Ti and A, - Tj. Moreover, we shall 
assume that the energy transfer term is that given by Post (1956) 

in which the as yet undefined quantities are the ion temperature T,, the ion and 
electron masses mi and me, the absolute value of the electronic charge e ,  and the 
Coulomb logarithm A (Spitzer 1956). The use of ( 2 . 2 )  for Rem implies that the 
ionization, though slight, is sufficiently large that ion-electron collisions dom- 
inate over electron-neutral collisions, because of the large Coulomb cross-section. 
However, the use of (2 .2)  is not essential, since it merely provides a convenient 
representation for the energy transfer term, and if the conditions implied in its 
use were far from being realized a more appropriate energy transfer term could 
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be used in its stead without changing any essential features of the analysis. 
The same comments apply to p, and A,. 

We non-dimensionalize (2.1) by referring all quantities to their upstream 
values, so that Te/q0 = 8, T,/T,, = $, ne/ne,, = v, Ae/heo = pJpen = @, and we 
introduce the non-dimensional distance 6 = x/L, where L is a characteristic 
length, taken to be the ion-atom shock thickness. We obtain, using the assump- 
tion that ni = n,, ui = ue everywhere, 

in which the constants a, b, c are given by 

Convenient expressions for a, b, c are given in the Appendix. From the relative 
magnitudes of u and b it  can be shown that the electron viscous dissipation term 
is very small, the ratio b /u  being of the order of 5 x for a typical case. 
Henceforth the dissipation term will be neglected. 

For the ion-atom shock quantities v and $, we taken the Mott-Smith results, 
which are 

3/31 
1 +e-44' 

v =  l+- ( 2 . 5 ~ )  

The constants P1, Pz, p3 are functions of the free-stream Mach number M based 
on the sound speed in the ion-atom mixture, 

For high Mach numbers we may take p1 = 1, which then gives 

( 2 . 7 ~ )  
1 dv - 12e-45 _ _ _  -f([) = 3 

( 1 + e-45) (4 + e-45) ' 
v=l+- 

1+e-45' vat - 
Also for large M ,  

$=.- 1 + ,4e45 + ~- (2 .7b)  1 + 4e45 

The quantities v and f, which are central to the analysis, are plotted in figure 1. 
Upon making the aforementioned simplifications and substitutions, the govern- 

ing equation for the electron temperature can be written 

withf(5) and v(5) given by ( 2 . 7 ~ )  and $([) given by (3 .7b ) .  The boundary con- 
ditions associated with (2 .8)  are 
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where is the value of q5 at 6 = + 00 asgiven by (2.5). These boundary conditions 
are for the case when the electrons ahead of the shock are in thermal equilibrium 
with the ion-atom mixture. The boundary conditions for the non-equilibrium 
case will be discussed subsequently. 

Equation (2.8) is a non-linear equation, with singularities at both end-points. 
To bring out the essential features of the shock transition, we shall present 
solutions to (2.8) under several different simplifying assumptions. First, we 

E 
FIGURE 1. Non-dimensional density and density gradient for a normal shock wave according 
to Mott-Smith theory vs the non-dimensional distance 6 = x/L, where L is the thickness 
of the massive-particle shock wave. Functions plotted are those given in ( 2 . 7 ~ ) .  

4 + e-4E 1 -t 4e4f v=.- - ___ - 
1 + e 4 f  1 +e45 ’ 

1 dv 12e-41 f(6) = - - =  _. -~ 

u d6 ( 4  + e-4f )  ( 1  + v 4 f )  * 

consider the case of constant thermal conductivity and neglect relaxation 
effects. Following this we treat the case of temperature-dependent thermal 
conductivity with relaxation. And finally, we consider the latter case when the 
electrons and ion-atom mixture are not in thermal equilibrium ahead of the 
shock. 

3. Constant thermal conductivity, no relaxation 

are neglected, (2.8) reduces to 
When the thermal conductivity is taken constant, and relaxation effects 

The boundary conditions a t  ,$ = -a are Oo = 1, (dO/d[), = 0. At 6 = +a we 
require (dO/dE) = 0,  but because relaxation has been omitted, we cannot inadvance 

37 Fluid Mech. 16 
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specify O,, but must determine it in the course of the solution. The problem thus 
posed is not physically realistic, since it assumes that the electrons and heavy 
particles are completely insulated from one another, which would be poseible 
only if mJmi = 0. However, there are a number of interesting features to this 
problem which provide insight for the more realistic cases to be treated 
subsequently. 

An asymptotic solution to (3.1) for [ -+ -00 is obtained by transforming (3.1) 
to an integral equation. We first integrate (3.1) from - 00 to <, 

(3.3) 

Then after multiplying by the integrating factor e-at and integrating once again, 
we obtain 

e-at(B-l)-K = (3.3) 

where we have written K = lim e-ac(O - 1). It can be shown that this limit exists 

and is finite. Then using the asymptotic form f ( [ )  N 12e4t, and interchanging 
the order of integration, we obtain 

g+-W 

8 = 1 + K eat + 8 [‘ e4s O(s) ds - Beat e(4-a)s B(s) ds. ( 3 4  
J --m J -m 

This integral equation may be solved by the method of successive approximations 
(cf. Tricomi 1957). The first two approximations are 

The method fails for a equal to multiples of 4, but we shall be interested only 
in a < 4. 

In  similar fashion, an asymptotic expansion for [ + + 00 may be obtained, 
which has the form, to second approximation 

Each of the asymptotic expansions contains one unknown parameter, to be 
determined from the boundary conditions at the other end. One way to complete 
the solution is to continue the asymptotic solutions from both ends by numerical 
integration and by repeated trial find the pair of values K and 8, which corre- 
spond to a continuous integral curve joining the two asymptotic solutions. We 
shall employ a simpler though less accurate method. 

We take 8([)  for the entire domain ( - 00 < [ < + 00) as 



Xhock-wave structure in a partially ionized gas 579 

The values 8 = - 1.0, + 0.5 a t  which the polynomial is matched to the asymptotic 
expansions were arbitrgrily chosen to correspond to locations where the forcing 
functionf(6) (see figure 1) is less than about one-fourth of its maximum value. 
The four coefficients a, of the polynomial are expressed in terms of K and 8, by 
requiring that the polynomial and its fist derivative match the asymptotic 

12 

10 I 

- 6  - 5  - 4  - 3  -2 -1 0 1 2 
f; 

FIGURE 2. Variation of electron temperature 8 through shock wave for different values of 
the parameter a, under assumptions of constant thermal conductivity and no relaxation 
effects. 

expansions at both 8 = - 1.0 and 6 = 0.5. Then the evaluation of K and 8, 
proceeds as follows. From (3.2) and (2.9b) we have 

8, = 1 +2/"  f(t)O(t)dt. 
3 - w  

On the other hand, (3.2) may be integrated and rearranged to read 

(3.9) 

Then, if we substitute the representation for 8 given by (3.7) into (3.8) and (3.9) 
we obtain after evaluating the necessary integrals (numerically) two algebraic 
equations for K and B,, which when solved complete the solution. 

The solutions B(6) for values a = 2.0, 1.0, 0-5, and 0.1 are shown in figure 2. 
In  figure 3, 8, is plotted as a function of a. It is seen from figure 2 that as a 
decreases the thermal shock broadens. This could also have been inferred from 
the asymptotic solution for 6 -+ -m given by (3.5), the leading term of which 
is 1 + KeaE. Also, it is seen from figure 3 that as a + 0, 8, + 13.2. We shall discuss 
this point in some detail, since we shall exploit the consequences of this behaviour 
in the analysis which follows. 

37-2 
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The limiting behaviour for el as a -+ 0 may be obtained as follows. We take 
8(() outside the integral in (3.8) by.use of the mean-value theorem, 

(3.10) 
J --m 

where trn is some point on the interval - 00 < t < + co. Since f ( t )  = d(ln v)/dt, 
and (vl/v,) = 4, we may write 

0, = 1 + %8(,!&J In 4. 

0 0.2 0-4 0.6 08  1 -0 1 -2 1.4 1.6 1.8 
a 

FIGURE 3. Maximum electron temperature 8, behind shock wave, as a function of 
parameter a ,  for the constant-conductivity, no-relaxation model. 

Now, from figure 2 we observe that with decreasing values of the parameter n 
the temperature profiles 8(() become broader and flatter. As a + 0,  8 tends to 
a substantially constant value (its downstream limit) over the range of .$ for 
which the functionf(() is non-negligible. Therefore, we may choose 6, such that 
O(tm) = 8,, and we obtain 

8, = l /( l-$In4) = 13.158, (3.11) 

in agreement with the extrapolation of the curve shown in figure 3. 
This last result suggests that the forcing functionf(() may be replaced by a 

delta function when considering its influence on those quantities which are sub- 
stantially constant over the non-vanishing domain off(() and which are bounded 
over the entire domain - co < 5 < + 00. Consistent with this, the density ratio 
v and ion temperature 0 should be replaced by step or Heaviside functions. This 
approach will be used in the analysis of the full equation (2.8). Before we proceed 
to the analysis of the full equation, a few remarks may be made about the direct 
effect of thermal conductivity on the thermal behaviour of the electrons during 
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their passage through the shock. For zero thermal conductivity (i.e. u --f CQ), 

equation (3.1) reduces tQ 
d8ld5 = %f(O 0 

which, since f ( f )  = d v / v d [ ,  can be integrated to obtain Bv-3 = const., and in 
particular 

B , / B ~  = (vl/vo)% = 43- for M + CQ. 

Thus, for zero thermal conductivity, we get the expected result that the com- 
pression of the electrons through the shock is isentropic. Now when the thermal 
conductivity become finite, part of the energy supplied to the electrons (from 
the ion-atom mixture) during the compression is carried away by conduction 
toward the region of lower electron temperature ahead of the shock. This process 
tends to lower the final electron temperature, but at  the same time the electrons 
entering the compression zone have a higher temperature due to this pre- 
heating, and this tends to increase the final electron temperature. The net effect 
of these two competing mechanisms, as can be seen from the results obtained, is 
to increase the final temperature. Also, as the thermal conductivity becomes very 
large ( a  + 0) the electron compression approaches an isothermal one, with all 
of the energy supplied to the electrons during this compression being transported 
ahead of the shock by conduction. Since essentially all of the thermal energy 
supplied to the electrons comes from the ion-atom mixture (recall that the kinetic 
energy of the electrons is negligible), what is implied by the foregoing is that as 
the thermal conductivity increases, so does this energy transfer. In  an exact 
analysis, this increase in energy transfer would be reflected in a decrease in the 
final ion-atom temperature, but we neglect this perturbation, since we assume 
the gas to be slightly ionized with only a small fraction of the total internal energy 
content of the gas residing in the electrons. 

Although the problem considered in this section is not physically realistic, 
since energy transfer between the electrons and the massive particles was 
neglected and as a consequence the downstream eleotron temperature was 
unrelated to the downstream ion-atom temperature, we shall see that the main 
qualitative features of the broadened electron temperature zone are unchanged 
when this energy transfer is taken into account. 

4. Temperature-dependent thermal conductivity, with relaxation 

(2.8) with the following approximations. 
Guided by the results of the previous section, we shall treat the solution of 

(i) We replace v ( f )  and $( f )  by Heaviside functions (Friedman 1957) 

1' = 1 + 3H(f), 9%) = 1 + H ( O  ($1 - 1 1 3  (4.1) 

where H ( f )  = 0 for 6 < 0 

= 1 for f > 0. 

(ii) From (i), it  follows that we must replacef([) by a delta function, 
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The above approximations reduce (2.8) to 
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The boundary conditions on (4.3) are 

d8 8 = 1 ,  - = 0  at (=-q 
d5 

(4.3) 

(4.4a) 

(4.4b) 

where r$l is determined from (2.7b). VC7e put y = at ,  and express (4.3) as two 
differential equations? 

and 

(4.5a) 

(4.5b) 

with the ‘initial’ conditions ( 4 . 4 ~ )  and (4.46) applying respectively. The role 
of the delta function 6([) in matching the solutions of ( 4 . 5 ~ )  and (4.5b) will 
become evident shortly. We observe that in (4.5) only the parameters and c/a2 
appear. Since #1 is a function of M only, and it is shown in the Appendix that 
c/a2 = 6.1(T,JTm0)/M2 = 6-1r/M2, the family of solutions obtained for a given 
Mach number and chosen values of 7 will be applicable, within the limitations 
of the theory, for any slightly ionized gas. The specific gas properties enter only 
in the scale factor relating y to x. 

If we linearize (4.5a) about = --co to obtain starting values for numerical 
integration we obtain ” 

d2(8-1) d(0-1)  c + -- (8 - 1). -=- 
dy2 dy a2 (4.6) 

The asymptotic solution to (4.5a) satisfying the boundary conditions (4.4a) is 
therefore 

where 

and K is as before an unknown parameter to be determined from the downstream 
boundary conditions. Similarly? we may linearise (4.5 b )  by replacing the terms 
0% and 8* by 13% and 8$ respectively, where 8, denotes the value of 8 at ( = 0,. 
We obtain the differential equation 

8 - 1  = Key07 (y-f -m), (4.7) 
(4.8) yo = ${ 1 + ( 1 + 4c/a2)*} 

(4.9) 

The solution of (4.9) which satisfies the boundary conditions (4.4b), and gives 
8 = 8, at  ( = 0,  is 

8 = 8, - (81- 8,) e-717 (0 ,  < 9 < m), (4.10) 

where (4.11) 
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The use of the temperature 6,  instead of 8, for evaluation of the transport 
coefficients would make only a small change in y l ,  provided 8+/8, is close to 
unity (as we expect it is, since according to the results of Q 3 the major change in 
I3 occurs before the ion compression represented by the Heaviside function at  
the origin). We observe also that as c tends to zero, y1 and (dO/dy),=,+ both tend 
to zero; this is consistent with our requirement in $ 3  that the solutions for zero 
relaxation satisfy the downstream boundary condition (dB/d[),=+, = 0. 

7-70 

for different values of the ratio c/a2. 
FIGURE 4. Non-dimensional electron temperature integrals of equation ( 4 . 5 ~ )  obtained 

To complete the solution of (4 .3 )  we require that the integral of ( 4 . 5 a ) ,  started 
by the asymptotic expansion (4 .7 )  and continued by numerical integration, match 
at  7 = 0, (where 8 = 8,) with the integral (4 .10 )  of (4 .5b ) .  As in $ 3 ,  we have 
two unknown parameters, 8, and K ,  which must be determined in order to 
effect this matching. A procedure for accomplishing this without iteration is as 
follows. 

For the numerical integration of ( 4 . 5 ~ )  we choose a convenient value of 0 
close to unity, say 8(ro) = 1.05, corresponding to an as yet unknown 7 = yo 
near -ax From (4 .7 )  we see that if 13(ro) is specified, the starting conditions for 
the numerical integration will not involve the unknown quantity K (or its 
equivalent, yo), since 

( d w r ) 7 = 7 v  = r o t m o )  - 11, (d2~/d72)?l=70 = YW(%) - 11. 
Thus, for given values of a and c, and a chosen 8(qo) which may be as close to 
unity as one desires, the integral of ( 4 . 5 a )  will be of the form 8 - #(ro) = f(r - q0). 
Several such integral curves obtained for different values of A = c/a2, starting 
with S(qo)  = 1.05, are shown in figure 4 .  
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To determine 8,, we integrate (4.3) from q = - 00 to 7 = 0,, obtaining 

8 l  (g) = 
+ d7 o+ 

(4.12) 

The term - $8 ,  In 4 comes from the integration of the delta function past the 
origin to 7 = 0,. Now, the integral on the right-hand side of (4.12) is, as was 
shown, a function only of known parameters and the value of 8 at the upper limit, 
namely 8,. Likewise, the derivative (d0/d7)o is a function only of known para- 
meters and 8+, from (4.10) and (4.11). Combining these equations we obtain an 
equation for 8+ in the form 

(4.13) 

which may be solved directly for 8,. After 8, is found, the value of yo can then 
be determined, since 8 = 8, at 7 = 0, and the integration of (4.5a) yielded 
8 - 8(yo) as a function of 7 - v0. The complete solution is then composed of the 
asymptotic solution (4.7) and its numerical continuation from 7 = -00 up to 
7 = O+, and the solution (4.10) from 7 = 0, to 7 = + co. It will be observed that 
the use of the delta function approximation for f(7) forces a discontinuity in 
the derivative (dO/dy) at the origin, such that 

(de/d7),_ - (dO/dy)o+ = $878 In 4. 

We have attempted to evaluate the accuracy of the foregoing method of 
solution by comparing its prediction of the electron temperature profile with that 
obtained by Jukes for a fully ionized gas at  a Mach number of 10. The comparison 
is accomplished by replacing the Jukes ion density profile by a Heaviside func- 
tion, and choosing T = 1, c/a2 = 6-1/M2. The Mach number M which corresponds 
(for equality of the upstream velocity) to Jukes’s value of 10 is 1042, because his 
case is that of a fully ionized gas in which the electrons contribute equally with 
the massive particles t o  the sound speed. We chose the downstream temperature 

equal to that given by the Rankine-Hugoniot relations for M = 10, however, 
so as to have the same temperature ratio across the shock. The transport pro- 
perties are evaluated for a proton-electron gas. 

The comparison between the Jukes electron temperature profiIe and that given 
by the present theory is shown in figure 5. In  both figure 5(a)  and ( b )  the ion 
temperature profile 4 is that found by Jukes and the abscissa is 

5’ = ( 3ni0 mi co x)/4pu.io, 

where the sound speed c is given by c i [5(pi+pe)/3n,im$. Hence, except for 
a numerical factor of order unity, 6‘ z x/lio, where li0 is the ion viscosity-based 
mean free path ahead of the shock. One sees that the present analysis predicts 
a somewhat more rapid approach of the electron temperature to its downstream 
equilibrium value than was found by Jukes, although in both analyses most of 
the electron temperature increase occurs ahead of the ion shock. The extent of 
the zone of elevated electron temperature ahead of the ion shock is approximately 
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the same for both theories (about 5 x lo3 upstream mean free paths), and this 
predicted property of the shock structure is possibly the most interesting one 
and the one which might best be tested by experiment. To the scale to which 
figure 5 ( b )  has been plotted, the discontinuity in dOld6' a t  6' = 0 is not apparent. 

Jukes's analysis 
I 440 

30 

20 

10 1 0 

440 
Present analysis I 

30 

20 

10 

0 

FIGURE 5. Comparison of the present analysis with Jukes's results for the electron teni- 
perature profile 0. In  both ( a )  and ( b ) ,  4 represents the non-dimensional ion temperature 
profile T,/TCo obtained by Jukes, which in the present analysis was replaced by a Heavisidc 
function. The non-dimensional length 5' is the physical distance .?: normalized by the 
upstream mean free path. 

5. The non-equilibrium shock wave 
The analysis of the preceding section can be applied with little modification 

to the very interesting case where the temperature of the electrons differs from 
that of the ions and atoms in the free stream ahead of the shock. This situation 
is often met in practice, particularly in wind tunnels in which plasma produced 
by an electric arc is expanded rapidly in a nozzle to supersonic speeds (Sherman 
& Talbot 1961). It has been observed in such situations that the electron tem- 
perature in the supersonic stream is appreciably higher than the ion-atom tem- 
perature. This temperature differential appears to persist for a long time during 
the decay of the plasma, for reasons connected a t  least in part with the mechanism 
of recombination (Byron, Stabler & Bortz 1962). 

The non-equality of the temperatures 6 and 4 ahead of the shock poses certain 
difficulties in prescribing the upstream boundary conditions for the shock. One 
way to treat the upstream boundary condition is as follows. When the oncoming 
gas is far upstream of the shock (supposing that 6 > 4) one expects d6jdq < 0, 
since relaxation effects in the uniform stream will tend to  make 6 decrease and 
approach 4. As the gas nears the shock, this electron-temperature decrease will 
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be compensated for by an increase due to the thermal broadening effect pro- 
duced by the shock wave. Somewhere ahead of the shock a place presumably is 
reached where the two effects compensate, and d8/dq = 0. We shall denote this 
point by 7, and the non-dimensional electron and ion temperatures at this point, 
whatever they may be, by 8, and $,. We recall that the ion temperature Ti was 
non-dimensionalized by the upstream electron temperature Go, so if qo < T," 
the non-dimensional ion temperature at the point 7, will be $, = 1/7, where 
7 = Teo/5'& 2 1.  The existence of such a point yo is not guaranteed in all cases. 
For example, in a situation where the free-stream electron temperature is very 
much greater than the ion temperature the compressional heating of the electrons 
might not be great enough to counterbalance their cooling due to relaxation. 
The present analysis, without modification, would not be applicable in such 
a situation. 

I I I I I I I I 

v1 
-2.5 x lo2 -2.0 - 1.5 - 1.0 - 0.5 0 0.5 1.0 x lo2 

FIGURE 6. Mach 6 electron temperature profiles. The electron temperature is normalized 
with respect to the upstream massive-particle temperature Tmo. The different curves repre- 
sent different initial values of the upstream electron-massive particle temperature ratio 
T = TeJT,no, and the physical length scale is normalized by x = L y / a  where L is the thickness 
of the massive-particle shock wave. 

The solution for the non-equilibrium case is carried out in exactly the same way 
as was done for the equilibrium case, in 0 4, with the following exceptions: 

(i) In ( 4 . 3 )  the ion temperature 'profile' is replaced by 

$ = [1 + ($1 - 1) H(E)1/7 (5 . la)  

with 7 = 8(ro)/$(ro). (5.16) 

Likewise, in the last terms on the right of (4.50,) and ( 4 . 5 b )  the factors in the 
parentheses are replaced by (8 - 1/7) and (8 - $JT) respectively. The quantity 
$1 is calculated just as before in terms of the ion-atom free-stream Mach number, 
through (2.76). 

(ii) Numerical integration of ( 4 . 5 ~ ~ )  which is started from 7 = v0, is begun 
with the boundary conditions d8jdT = 0, 8 = 1.  

(iii) As in the previous section, once M and T are chosen, the factors c/a2 and 
are specified, and no other transport property information is required to 

compute the integral curves of 8 versus 7. 
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Results of numerical integrations carried out on an IBM7090 computer are 
shown in figures 6 to 9. For convenience, the electron temperature T, has been 
normalized by the upstream ion-atom temperature Tm,. The abscissa is yr%, 
which was chosen because it groups the curves for different r closely together. 
The spatial extent of the thermally broadened electron temperature zone can be 
related to yrg through (A7) of the Appendix. If we denote by X and ys the 

- 24 

20.937 -----_ ---__- 

- 6  

J 
I I I 1 I 
x102 -5 - 4  -3  - 2  - 1  

?J7p 

- 16 

- 4  

I I I 
1 2 3 x  lo2 

FIGURE 7. Mach 8 electron temperature profiles. The electron temperature is normalized 
with respect to the upstream massive-particle temperature Tmo. The different curves repro- 
sent different initial values of the upstream electron-massive particle temperature ratio 
7 = Teo/Tmo, and the physical length scale is normalized by x = Ly/a where L is the thickncss 
of the massive-particle shock wave. 

physical and transformed distances from the beginning of the electron tempera- 
ture rise to the ion-atom shock (x = 0), we find from (A 7) 

rgyU( 2 . 2 ~  101lT& ] X = L  
(#Rm)~neolnA, ' 

where R, is the specific gas constant for the massive particles. The quantity 
rgqs/M has been plotted in figure 10. From figure 10 it  is readily seen that X, 
the electron temperature zone, is for given values of the upstream conditions 
T,,, ne, and In A,, appreciably increased with the Mach number, but only slightly 
increased with r.  

Before leaving this section, we shall comment briefly on the possible extension 
of this method to more highly ionized gases. We have assumed that the ionization 
is sufficiently small so that the energy content of the electrons is negligible 
compared to that of the massive particles (which are essentially all neutral atoms). 



588 M .  8. Greujal and L. Tulbot 

- 20 
I I I I I I I I 
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VP 
FIGURE 8. Mach 10 electron-temperature profiles. The electron temperature is normalized 
with respect to the upstream massive particle temperature Tmo. The different curves reprc- 
sent different initial values of the upstream electron-massive particle temperature ratio 
7 = l’eo/T,o, and the physical length scale is normalized by x = Lq/a where L is the thickness 
of the massive particle shock wave. 

-40 x lo2-32 -24 -16 -8 0 8 16 24x 10’ 
77% 

FIGURE 9. Mach 12 electron-temperature profiles. 

This permitted us to specify in advance the downstream equilibrium tem- 
perature of the mixture, and to neglect the energy perturbation due to energy 
transfer between the electrons and massive particles. For larger ionization levels, 
this energy transfer could no longer be neglected and the corrected downstream 
equilibrium mixture temperature ($Jr) = Tm,ITe, would instead be given by 

where $JT has the same meaning as before, and ti = ni/(ni +no) is the degree of 
ionization (n, = number density of neutral atoms). 
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n I 

I 1 

" 6  8 10 12 
Mach number M 

FIGURE 10. Non-dimensional width T,JX of the zone of elevated electron temperature ahead 
of tha massive-particle shock wavc, as a function of Mach number and initial tcmperatiirc 
ratio r = T,/Tmo. 

6. Electric field and charge separation 
It was mentioned in the introduction that a small charge separation is pro- 

duced within the shock transition. We consider this effect now. The one-dimen- 
sional momentum equation for the electron gas is 

in which E is the electric field produced by the charge separation. Using the same 
arguments which were applied to the energy equation, we neglect the electron 
kinetic energy, viscous stress and momentum exchange terms, which then 

(6.2) 
reduces (6.1) to 

Poisson's equation may be written 

dEld[  = 4nne0eL(u, - V J ,  (6.3) 
where v, = ne/ne0, v, = n,/neo. After differentiating (6.2) and combining with 
(6.3), we obtain 

( V i - v e )  = (6.4) 
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From order of magnitude arguments, we conclude that the derivative of the term 
in the braces will at most be of order T,,, and since nel 6 4ne0, a rough order of 
magnitude for the charge separation is 

where ZDl = (k!&/4nneleZ)~ is the Debye length based on downstream conditions. 
Since for almost all conditions of interest (ZD/L)2 < 1, we conclude that charge 
separation is very small, and may be neglected in computing the electron tem- 
perature profile. This coiiclusion was also reached by Jukes. This charge separa- 
tion, however, is sufficient to produce an electric field which is important in the 
over-all energy balance. We may examine the consequence of this electric 
field by computing the work W done by the electric field on an electron in its 
passage through the shock transition. 

From (6.2) 
eE dx = k 3 dve + k dT,. (6.5) 

Since most of the electron temperature rise occurs ahead of the density change, 
for a strong shock we have 

/mm v, 
W = -  

W kT,lln4+k(T,1-T,u). (6.6) 

The first term of (6.6) is the work done on an electron in an isothermal compres- 
sion through the shock, at the temperature Tel. This is in agreement with what 
we have already observed, that the pre-heating of the electrons by thermal 
conduction makes their compressions almost isothermal and the work for this 
isothermal compression is supplied by the electric field. The second term of (6.6) 
is 2 / 5  the enthalpy increase per electron. This indicates that the electric field 
is responsible as well for part of the heating of the electrons, the remaining part 
being supplied by the collisional relaxation process. 

7. Effects of ionization and recombination 
Since ionization and recombination rates vary widely with the state and com- 

position of the gas, it does not seem feasible to discuss these processes in any 
generality. Instead we shall attempt to illustrate their effects on the shock 
structure by examination of a particular case, Consider a shock wave in argon, 
with the following free-stream conditions: ne, = lO14cm-3, nmU = 1016cm-3, 
uo = 5 x lO5cmsec-l, Te, = 3500"K, Tmu = 700"K, M = 10. These plasma con- 
ditions are similar to those obtained in the Berkeley arc-heated low-density 
wind tunnel. For these conditions the ionization rate is exceedingly small, and 
the dominant mechanism for change in electron density is recombination. 

It has been shown (Hinnov & Hirschberg 1962; Byron et al. 1962) that under 
conditions such as those assumed here, the recombination process is the three 
body process 

The excited atom A* thus formed is at first de-excited to lower energy levels by 
inelastic collisions with free electrons, and thereafter to the ground state by 

A++e+e+ A*+e.  (7.1) 
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radiative de-excitation. Hinnov & Hirschberg find from their analysis that the 
recombination coefficient c i  = - (1/nt) (dn,/dt) can be expressed approximately by 

a! M 5.6 x (Tev)-S n, em3 sec-l, (7.2) 

where Tev is the electron temperature in electron volts. The strong dependence 
of a! on Tev is worth noting. If we evaluate LX at the upstream temperature 
Tev, = 0.3 eV we obtain a M 1.3 x 10-10~m3sec-~. On the other hand, if we use 
the electron temperature just ahead of the ion shock, Tev, M 1*7eV, we obtain 
according to (7.2) LX z 4.8 x 10-14, although the recombination theory is not 
accurate for such high electron temperatures. 

To interpret the value of a! we require the approximate extent of the electron 
temperature shock wave. From (A7) we find X/q = 0.52, and hence from 
figure 9, X M 13 cm. The broadness of the electron temperature zone is evident 
from these values. If we take for rough estimation the mean value Z M 10-I2 

see-l, we find, using dn,/dt = uo(dn,/dx) in the definition of a!, 

which for X = 13 cm and the assumed upstream conditions gives about 0.26 yo 
decrease in the ionization. (If we had used the upstream electron temperature, 
the decrease would have come out over 25 yo.) These simple estimates indicate 
that under some circumstances the recombination could be appreciable, and 
would have to be taken into account in the calculations. 

Another quantity of interest in connexion with the recombination process is 
the energy fed back into the electron gas by the inelastic electron-atom collisions. 
The energy gained by the free electrons per recombination is not too accurately 
known, because of uncertainties involved in the de-excitation of metastable 
states (Byron et aZ.), but for argon this energy transfer is about 0.8 eV per recom- 
bination. Thus, if recombination caused a 2.6 x decrease in electron number 
density within the electron shock zone, a total energy transfer of about 2-1 x 10I1 
eV per cm3 to the electron gas would be associated with this recombination. This 
value is to  be compared with the total energy content of 3 x 1013 eV per cm3. 
Clearly, when recombination cannot be neglected, neither can the energy transfer 
due to inelastic collisions. It is in fact this energy transfer which is mainly 
responsible for the persistance of high electron temperatures in certain recom- 
bining plasmas. 

For comparison, we may examine the values of the ion-atom shock thickness. 
According to the Mott-Smith theory (figure ll), for neutral argon the shock 
thickness L is about six times the upstream mean free path lnL,. On the other hand, 
if the ionization were sufficiently high, such that the inter-molecular collisions 
were dominated by coulornbic interaction (s = 2), we see that L would be several 
hundred times as large as lma. The viscosity of argon at  700 "K is 4.4 x 10-4 
g/cmsec, and the viscosity-based mean free path for this temperature and 
n, = 1016cm-3 is Z,, = 2.7 x 10-2cm, so the neutral atom shock thickness for 
the assumed conditions would be of the order of 0.13cm. Thus the thermally 
broadened electron temperature shock is according to these estimates some 102 
upstream mean free paths in extent. 
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To complete the discussion of recombination phenomena, we observe from 
(7.2) that according to our solution of the shock structure problem the region of 
elevated electron temperature ahead of the compression zone will be a region of 
reduced recombination rate, since in this region n, = ne0 while T, increases. We 
believe that this reduction in recombination rate provides the explanation for 
the 'dark space ' which we have observed ahead of shock waves in the partially 
ionized flows produced in the Berkeley arc-heated low-density wind tunnel 
(Sherman & Talbot 1961), since the self-luminosity of the flow in this case is due 
to the recombination radiation. Typical observations of such shock waves and 
associated dark spaces are shown in figure 12, plate 1. Detailed studies of such 
shock waves are in progress, and will be reported on in a future publication. 

2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Mach number M 

FIGURE 11. Maximum-slope shock thicknesses from Mott-Smith theory for repulsive 
point-centre molecules, normalized by the upstream mean free path Z," (after Muckenfuss). 

8. Concluding remarks 
The model of the shock structure which we have proposed offers a relatively 

simple method for analysing shock waves under both equilibrium and non- 
equilibrium conditions in a slightly ionized gas. The predictions obtained from 
this model are qualitatively similar to those found by Jukes for a fully ionized 
gas, the essential feature of the shock transition being the broad region of 
elevated electron tempertaure which extends ahead of the compression zone of 
the shock wave. 

A difficulty in applying the present analysis to physical situations is the lack 
of information on the transport properties (viscosity, thermal conductivity, 
energy exchange) in a non-equilibrium partially ionized gas. For simplicity, and 
to illustrate the method of analysis, we used the thermal-conductivity and 
energy-exchange expressions appropriate to a fully ionized gas, although we 
recognize that these may not be realistic values for slightly ionized gases. In 
particular, we expect the electron thermal conductivity in a slightly ionized gas 
to be numerically smaller and to vary differently with temperature than the 
five-halves power law appropriate to a fully ionized gas. Consequently, we expect 
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( b )  

FIGLJRE 12, plai,e 1 .  ( n )  Shorli \va,\.e formrd ahthad of  2 in. diamct,er flat-ended cylindcr i i i  

A1 = 6.2 free jet) argon tlow issuing from a conical nozzle. Ionization - 0.6 '?A, stagnation 
pressure a,nd temperature - 300mmHg anti 5000"K, test chamher pressure - 300 pHg. 

in. diamet,cr sonic nozzle. Stagnation pressure and 
t,emperat,ure - 250 mm Hg and 7000 OK, test chamber pressure - 700 p Hg. Ionization - 1 '('A. Dist,ance from exit of nozzle to  beginning of dark space ahead of  normal shock is 
approximat,cly 4 in., and the dark space extends for about, 1.1 in. The Mach nimber ahead of 
t'hc normal shock (at rear of dark space) is in the vicinity of 10. Notice also the dark spaces 
associat'ecl with the ' barrel shocks' surrounding the jet. 

( b )  Free expansion of  argon from 

(Facing p .  5'32) 
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that for a partially ionized gas the zone of elevated electron temperature may 
be considerably smaller in extent than that predicted here. Fortunately, it  is 
a simple matter in our analysis to utilize any desired expressions for the electron 
transport properties and electron-atom energy exchange. 

The research reported here was supported by the Air Force Office of Scientific 
Research under Contract AF 49(638)-502. 

Appendix 
We present here some useful formulas for the constants a ,  b,  c ,  and for con- 

verting the lengths 7 and < to the physical distance x. 
The quantity a was defined as 

a = $(ne,u,L/heo). 

If we use the Spitzer-Harm (1953) value for the thermal conductivity, 

Also, using the definitions of a and c, we obtain 

For an estimate of the constant b, we may use the Lorentz value for pe, namely 
(Kaufman 1960), peo/heo = +&me. (A51 

Then 

Using typical values of b and a (cf. $7) ,  it is easily seen that b/a < 10W, thus 
justifying the neglect of the viscosity terms in the momentum and energy 
equations for the electrons. 

The physical distance z, in terms of the non-dimensional length 7, is given by 

It will be noticed that in this relationship the ion-atom shock thickness L cancels 
out. This was to be expected, since the ion-atom shock profile was replaced by a 
' zero-thickness ' Heaviside function. It is, however, of interest to compare 
the electron and ion-atom shock thicknesses. For this purpose, the results 
computed by Muckenfuss (1960) for molecules which are point centres of repul- 
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sion, reproduced in figure 11,  are useful. The reference mean free path lmo used 
by him is the viscosity mean free path based on conditions ahead of the shock, 

where pmo, pmo and amo are respectively the free stream viscosity, density and 
sound speed in the ion-atom mixture. In  figure 11,  s is the exponent in the inter- 
molecular force law, P = KITS,  and according to this model ,urn N (T m )(sf3)/2(s-1). 
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